Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy.
نویسندگان
چکیده
AIMS/BACKGROUND Vascular endothelial growth factor (VEGF) is a hypoxia induced angiogenic factor. Recent studies have shown that high levels of VEGF accumulate in the vitreous of patients with proliferative diabetic retinopathy (PDR). The purpose of the present study was to identify the retinal cells that upregulate VEGF expression in human PDR patients representing progressive stages of retina deterioration. METHODS Thirteen formalin fixed and paraffin embedded enucleated eyes with PDR were used (eyes were enucleated because of being blind and painful as a result of neovascular glaucoma). Thin retina sections were hybridised in situ with a VEGF specific probe, to identify cells producing VEGF mRNA. RESULTS All eyes with PDR showed upregulated expression of VEGF mRNA, specifically in the cells of the neurosensory retina. VEGF expression was upregulated in all three nuclear layers--namely, the ganglion cell layer, the inner nuclear layer, and the outer nuclear layer. However, in each patient, VEGF producing cells were mostly distributed in a different layer, or even confined to a specific region in that layer. For example, expression by the outer nuclear layer was mostly detected in detached (presumably hypoxic) regions of the retina. CONCLUSIONS Progression of PDR is distinguished by a sustained, upregulated expression of VEGF by the neurosensory retina. Cells in all retina layers can potentially contribute to augmented VEGF production. The restricted population of VEGF producing cells in each case is likely to represent cells residing in ischaemic regions of the retina. Thus, VEGF may function as a linking factor between retinal ischaemia and PDR associated neovascularisation.
منابع مشابه
Decrease of Serum Vascular Endothelial Growth Factor, along with its Ocular Level, after the Periocular Injection of Celecoxib and Propranolol in Streptozotocin-induced Diabetic Mouse Model
Background: There is a direct correlation between ocular vascular endothelial growth factor (VEGF) level and progression of pathological outcomes in diabetic retinopathy. In our previous study, the periocular administration of propranolol and celecoxib could significantly reduce ocular VEGF levels in a diabetic mouse model. Here, we investigated the changes of serum VEGF after ...
متن کاملActivation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells.
Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promote...
متن کاملAssociation of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes.
Diabetic retinopathy and nephropathy cause significant morbidity in patients with diabetes. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor and is implicated in both of these diabetes complications. We previously reported transfection studies showing the VEGF -460 and VEGF +405 polymorphisms to increase basal VEGF promoter activity by 71% compar...
متن کاملFunctional characteristics of connective tissue growth factor on vitreoretinal cells.
Connective tissue growth factor (CTGF) level is elevated in eyes with proliferative vitreoretinal diseases, such as proliferative diabetic retinopathy and proliferative vitreoretinopathy (PVR), as we previously reported, but its functional characteristics on vitreoretinal cells are yet to be clarified. In this study, we demonstrated a growth-promoting effect of CTGF on cultured hyalocytes and b...
متن کاملLack of R-Ras Leads to Increased Vascular Permeability in Ischemic Retinopathy
Purpose The role of R-Ras in retinal angiogenesis and vascular permeability was evaluated in an oxygen-induced retinopathy (OIR) model using R-Ras knockout (KO) mice and in human diabetic neovascular membranes. Methods Mice deficient for R-Ras and their wild-type (WT) littermates were subjected to 75% oxygen from postnatal day 7 (P7) to P12 and then returned to room air. At P17 retinal vascul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of ophthalmology
دوره 80 3 شماره
صفحات -
تاریخ انتشار 1996